Churn rate modeling for telecommunication operators using data science methods
Year of publication: |
2023
|
---|---|
Authors: | Zatonatska, Tetiana ; Fareniuk, Yana ; Shpyrko, Viktor |
Published in: |
Marketing i menedžment innovacij : m&mi. - Sumy : [Verlag nicht ermittelbar], ISSN 2227-6718, ZDB-ID 2647971-0. - Vol. 14.2023, 2, p. 163-173
|
Subject: | churn | client | consumer | Data Science | forecasting | machine learning | marketing | modelling | outflow | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Data Mining | Data mining | Theorie | Theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.21272/mmi.2023.2-015 [DOI] hdl:11159/631414 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting with Artificial Intelligence : Theory and Applications
Hamoudia, Mohsen, (2023)
-
Schwartz, Eric M., (2014)
-
Application of predictive methods to financial data sets
Habibi, Reza, (2021)
- More ...
-
Zatonatska, Tetiana, (2024)
-
Marketing strategies in the banking services sector with the help of data science
Zatonatska, Tetiana, (2022)
-
Statistical arbitrage using cointegration and principal component analysis approach
Bartkoviak, Oleksandr, (2022)
- More ...