Closest Moment Estimationunder General Conditions
This paper considers Closest Moment (CM) estimation with a general distance function, and avoids the assumption of nonsingular quadratic local behavior. The results of Manski [1983], Newey [1988], Pötscher and Prucha [1997], and DE Jong and Han [2002] are obtained as special cases. Consistency and a root-n rate of convergence are obtained under mild conditions on the distance function and on the moment conditions. We derive the limit distribution of CM estimators in a general setting, and show that the limit distribution is not necessarily normal. Asymptotic normality is obtained as a special case when the distance function displays nonsingular quadratic behavior.
Year of publication: |
2004
|
---|---|
Authors: | HAN, Chirok ; JONG, Robert DE |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 2004, 74, p. 1-13
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Saved in favorites
Similar items by person
-
The properties of Lp-GMM estimators
Jong, Robert M. de, (2002)
-
Closest moment estimation under general conditions
Han, Chirok, (2004)
-
Closest Moment Estimation under General Conditions
Han, Chirok, (2004)
- More ...