Collaborative cost multi-agent decision-making algorithm with Factored-Value Monte Carlo Tree Search and Max-Plus
Nii-Emil Alexander-Reindorf and Paul Cotae
In this paper, we describe the Factored Value MCTS Hybrid Cost-Max-Plus algorithm, a collection of decision-making algorithms (centralized, decentralized, and hybrid) for a multi-agent system in a collaborative setting that considers action costs. Our proposed algorithm is made up of two steps. In the first step, each agent searches for the best individual actions with the lowest cost using the Monte Carlo Tree Search (MCTS) algorithm. Each agent’s most promising activities are chosen and presented to the team. The Hybrid Cost Max-Plus method is utilized for joint action selection in the second step. The Hybrid Cost Max-Plus algorithm improves the well-known centralized and distributed Max-Plus algorithm by incorporating the cost of actions in agent interactions. The Max-Plus algorithm employed the Coordination Graph framework, which exploits agent dependencies to decompose the global payoff function as the sum of local terms. In terms of the number of agents and their interactions, the suggested Factored Value MCTS-Hybrid Cost-Max-Plus method is online, anytime, distributed, and scalable. Our contribution competes with state-of-the-art methodologies and algorithms by leveraging the locality of agent interactions for planning and acting utilizing MCTS and Max-Plus algorithms.
Year of publication: |
2023
|
---|---|
Authors: | Alexander-Reindorf, Nii-Emil ; Cotae, Paul |
Published in: |
Games. - Basel : MDPI, ISSN 2073-4336, ZDB-ID 2527220-2. - Vol. 14.2023, 6, Art.-No. 75, p. 1-19
|
Subject: | Monte Carlo Tree Search | MCTS | Multi-Agent System | real-time decision making | distributed coordination | planning algorithm | Theorie | Theory | Agentenbasierte Modellierung | Agent-based modeling | Monte-Carlo-Simulation | Monte Carlo simulation | Algorithmus | Algorithm | Simulation | Operations Research | Operations research |
Saved in:
freely available
Saved in favorites
Similar items by subject
-
Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise
Jalali, Hamed, (2017)
-
A new approximation algorithm for multi-agent scheduling to minimize makespan on two machines
Zhao, Kejun, (2016)
-
An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines
Gu, Manzhan, (2018)
- More ...