Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat
| Year of publication: |
2022
|
|---|---|
| Authors: | Xu, Xiaojie ; Zhang, Yun |
| Published in: |
Intelligent systems in accounting, finance & management. - New York, NY [u.a.] : Wiley, ISSN 2160-0074, ZDB-ID 2379344-2. - Vol. 29.2022, 3, p. 169-181
|
| Subject: | Agricultural commodity | Commodity price | Neural network machine learning | Price forecasting | Time series | Sojabohne | Soybean | Neuronale Netze | Neural networks | Rohstoffpreis | Prognoseverfahren | Forecasting model | Rohstoffderivat | Commodity derivative | Preis | Price | Zeitreihenanalyse | Time series analysis | Agrarpreis | Agricultural price | Mais | Maize | Warenbörse | Commodity exchange | Baumwolle | Cotton | Rohstoffmarkt | Commodity market |
-
Song Zan Chiou Wei, (2019)
-
Price discovery in agricultural commodity markets : do speculators contribute?
Bohl, Martin T., (2019)
-
Vancsura, László, (2023)
- More ...
-
Thermal coal futures trading volume predictions through the neural network
Jin, Bingzi, (2025)
-
Rent index forecasting through neural networks
Xu, Xiaojie, (2022)
-
Contemporaneous causality among one hundred Chinese cities
Xu, Xiaojie, (2022)
- More ...