A comparative assessment of causal machine learning and traditional methods for enhancing supply chain resiliency and efficiency in the automotive industry
| Year of publication: |
2025
|
|---|---|
| Authors: | Gupta, Ishansh ; Martinez, Adriana ; Correa, Sergio ; Wicaksono, Hendro |
| Published in: |
Supply chain analytics. - [Amsterdam] : Elsevier, ISSN 2949-8635, ZDB-ID 3180833-5. - Vol. 10.2025, Art.-No. 100116, p. 1-17
|
| Subject: | Causal machine learning | Decision-making evaluation | Supplier escalation strategies | Supply chain resilience | Technology acceptance in supply chains | Traditional machine learning | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Kfz-Industrie | Automotive industry | Risikomanagement | Risk management | Lieferantenmanagement | Supplier relationship management |
-
Spieske, Alexander, (2022)
-
Industry 4.0 enables supply chain resilience and supply chain performance
Qader, Ghulam, (2022)
-
Wolfs, Diego A., (2015)
- More ...
-
Gupta, Ishansh, (2025)
-
Rating ESG key performance indicators in the airline industry
Caraveo Gomez Llanos, Alan Francisco, (2023)
-
Rating ESG key performance indicators in the airline industry
Caraveo Gomez Llanos, Alan Francisco, (2023)
- More ...