Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States
Year of publication: |
2023
|
---|---|
Authors: | Ray, Evan L. ; Brooks, Logan C. ; Bien, Jacob ; Biggerstaff, Matthew ; Bosse, Nikos I. ; Bracher, Johannes ; Cramer, Estee Y. ; Funk, Sebastian ; Gerding, Aaron ; Johansson, Michael A. ; Rumack, Aaron ; Wang, Yijin ; Zorn, Martha ; Tibshirani, Ryan J. ; Reich, Nicholas G. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 39.2023, 3, p. 1366-1383
|
Subject: | COVID-19 | Ensemble | Epidemiology | Health forecasting | Quantile combination | USA | United States | Coronavirus | Prognoseverfahren | Forecasting model | Epidemie | Epidemic | Sterblichkeit | Mortality | Gesundheit | Health | Prognose | Forecast | Gesundheitspolitik | Health policy |
-
Racial health disparities in the United States
Alsan, Marcella, (2024)
-
Health crisis and housing market effects : evidence from the U.S. opioid epidemic
D'Lima, Walter, (2023)
-
Global mobility and the threat of pandemics: evidence from three centuries
Clemens, Michael A., (2020)
- More ...
-
Strong rules for discarding predictors in lasso‐type problems
Tibshirani, Robert, (2012)
-
Epidemiological versus meteorological forecasts : best practice for linking models to policymaking
Coughlan Perez, Erin de, (2022)
-
Guo, Wei, (2023)
- More ...