Concept-drift detection index based on fuzzy formal concept analysis for fake news classifiers
| Year of publication: |
2023
|
|---|---|
| Authors: | Fenza, Giuseppe ; Gallo, Mariacristina ; Loia, Vincenzo ; Petrone, Alessandra ; Stanzione, Claudio |
| Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 194.2023, p. 1-11
|
| Subject: | Machine learning | Concept drift | Fake news | Fuzzy formal concept analysis | Text classification | Fuzzy-Set-Theorie | Fuzzy sets | Künstliche Intelligenz | Artificial intelligence | Klassifikation | Classification | Data Mining | Data mining |
-
IBM predictive analytics reduces server downtime
Bogojeska, Jasmina, (2021)
-
Thai stock news classification based on price changes and sentiments
Ponrudee Netisopakul, (2022)
-
Sentiment analysis in electronic negotiations
Körner, Michael, (2019)
- More ...
-
De Maio, Carmen, (2017)
-
Special issue on: deep learning for organisational knowledge retention
Sanjuán Martínez, Oscar, (2021)
-
Using local learning with fuzzy transform : application to short term forecasting problems
Loia, Vincenzo, (2020)
- More ...