Conditional density forecast of China's energy demand via QRNN model
| Year of publication: |
2018
|
|---|---|
| Authors: | Cao, Shubo ; Xu, Qifa ; Jiang, Cuixia ; He, Yaoyao |
| Published in: |
Applied economics letters. - Abingdon : Routledge, ISSN 1350-4851, ZDB-ID 1181036-1. - Vol. 25.2018, 12, p. 867-875
|
| Subject: | Artificial neural networks | China | conditional density forecast | Economic forecasting | Energy demand | Energy economics | neural network | QRNN | quantile regression | Quantile regression | Supply & demand | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Energiekonsum | Energy consumption | Energieprognose | Energy forecast | Energiemarkt | Energy market | Prognose | Forecast | Statistische Verteilung | Statistical distribution | Theorie | Theory | Energieökonomik |
-
Forecasting energy demand using neural-network-based grey residual modification models
Hu, Yi-Chung, (2017)
-
Marcjasz, Grzegorz, (2020)
-
Distributional neural networks for electricity price forecasting
Marcjasz, Grzegorz, (2023)
- More ...
-
A penalized U-MIDAS multinomial logit model with applications to corporate credit ratings
Jiang, Cuixia, (2025)
-
China's risk contagion using the mixed-frequency macro-financial network
Jiang, Cuixia, (2024)
-
Reinvestigating international crude oil market risk spillovers
Jiang, Cuixia, (2021)
- More ...