Conditional density forecast of China's energy demand via QRNN model
Year of publication: |
2018
|
---|---|
Authors: | Cao, Shubo ; Xu, Qifa ; Jiang, Cuixia ; He, Yaoyao |
Published in: |
Applied economics letters. - Abingdon : Routledge, ISSN 1350-4851, ZDB-ID 1181036-1. - Vol. 25.2018, 12, p. 867-875
|
Subject: | Artificial neural networks | China | conditional density forecast | Economic forecasting | Energy demand | Energy economics | neural network | QRNN | quantile regression | Quantile regression | Supply & demand | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Energiekonsum | Energy consumption | Energieprognose | Energy forecast | Energiemarkt | Energy market | Prognose | Forecast | Statistische Verteilung | Statistical distribution | Theorie | Theory | Energieökonomik |
-
Forecasting energy demand using neural-network-based grey residual modification models
Hu, Yi-Chung, (2017)
-
Marcjasz, Grzegorz, (2020)
-
Distributional neural networks for electricity price forecasting
Marcjasz, Grzegorz, (2023)
- More ...
-
Xu, Qifa, (2020)
-
Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model
Xu, Qifa, (2021)
-
Home bias in reward-based crowdfunding and its impact on financing performance : evidence from China
Jiang, Cuixia, (2022)
- More ...