Constituent input on regulatory initiatives : a machine-learning approach to efficiently and effectively analyze unstructured data
| Year of publication: |
2023
|
|---|---|
| Authors: | Ferguson, Daniel P. ; Harris, M. Kathleen ; Williams, L. Tyler |
| Published in: |
Journal of information systems : a publication of the Accounting Information Systems Section of the American Accounting Associaton. - Sarasota, Fla. : [Verlag nicht ermittelbar], ISSN 0888-7985, ZDB-ID 1176427-2. - Vol. 37.2023, 3, p. 119-138
|
| Subject: | machine-learning | text mining | natural language processing | regulation | standard-setting | unstructured data | Regulierung | Regulation | Data Mining | Data mining | Text |
-
Clapham, Benjamin, (2023)
-
Shankar, Venkatesh, (2022)
-
All work and no play : a text analysis
Downer, Kate, (2019)
- More ...
-
Eutsler, Jared, (2023)
-
Auditor industry expertise and the predictive power of the deferred tax valuation allowance
Axelton, Zhuoli, (2025)
-
Partner gender differences in prestige of clients served at the largest U.S. audit firms
Almer, Elizabeth Dreike, (2021)
- More ...