Constituent input on regulatory initiatives : a machine-learning approach to efficiently and effectively analyze unstructured data
Year of publication: |
2023
|
---|---|
Authors: | Ferguson, Daniel P. ; Harris, M. Kathleen ; Williams, L. Tyler |
Published in: |
Journal of information systems : a publication of the Accounting Information Systems Section of the American Accounting Associaton. - Sarasota, Fla. : [Verlag nicht ermittelbar], ISSN 0888-7985, ZDB-ID 1176427-2. - Vol. 37.2023, 3, p. 119-138
|
Subject: | machine-learning | text mining | natural language processing | regulation | standard-setting | unstructured data | Regulierung | Regulation | Data Mining | Data mining | Text |
-
Clapham, Benjamin, (2023)
-
All work and no play : a text analysis
Downer, Kate, (2019)
-
Unstructured data in marketing
Balducci, Bitty, (2018)
- More ...
-
Eutsler, Jared, (2023)
-
Harris, M. Kathleen, (2020)
-
Austin, Ashley A., (2021)
- More ...