Continuously monitored barrier options under Markov processes
In this paper we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Levy process and a local volatility jump-diffusion. We also provide a convergence proof and error estimates for this algorithm.