Convergence and complexity guarantees for a wide class of descent algorithms in nonconvex multi-objective optimization
Year of publication: |
2024
|
---|---|
Authors: | Lapucci, Matteo |
Published in: |
Operations research letters : a journal of INFORMS devoted to the rapid publication of concise contributions in operations research. - Amsterdam [u.a.] : Elsevier Science, ISSN 0167-6377, ZDB-ID 1467065-3. - Vol. 54.2024, Art.-No. 107115, p. 1-8
|
Subject: | Descent algorithms | Global convergence | Multi-objective optimization | Steepest-descent-related | Worst-case complexity | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Algorithmus | Algorithm |
-
Multi-objective optimization of cutting parameters in hard turning using the NSGA-II algorithm
Djami, Aslain Brisco Ngnassi, (2024)
-
Alcaraz, Javier, (2024)
-
Zenklusen, Rico, (2014)
- More ...
-
Improved front steepest descent for multi-objective optimization
Lapucci, Matteo, (2023)
-
On the convergence of inexact alternate minimization in problems with l0 penalties
Lapucci, Matteo, (2024)
-
Loss-optimal classification trees : a generalized framework and the logistic case
Aldinucci, Tommaso, (2024)
- More ...