Convergence of Archimedean copulas
Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions. No extra differentiability conditions on the generators are needed.
Year of publication: |
2008
|
---|---|
Authors: | Charpentier, Arthur ; Segers, Johan |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 78.2008, 4, p. 412-419
|
Publisher: |
Elsevier |
Keywords: | Archimedean copula Generator Kendall distribution function |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Lower tail dependence for Archimedean copulas: Characterizations and pitfalls
Charpentier, Arthur, (2007)
-
Tails of multivariate Archimedean copulas
Charpentier, Arthur, (2009)
-
Lower tail dependence for Archimedean copulas: Characterizations and pitfalls
Charpentier, Arthur, (2007)
- More ...