Credit risk prediction with and without weights of evidence using quantitative learning models
Year of publication: |
2024
|
---|---|
Authors: | Seitshiro, Modisane B. ; Govender, Seshni |
Published in: |
Cogent economics & finance. - Abingdon : Taylor & Francis, ISSN 2332-2039, ZDB-ID 2773198-4. - Vol. 12.2024, 1, Art.-No. 2338971, p. 1-19
|
Subject: | Credit risk | logisticregression | machinelearning | model risk | optimisation | weights of evidence | probability of default | parameter estimation | Kreditrisiko | Theorie | Theory | Schätzung | Estimation | Prognoseverfahren | Forecasting model | Risikomaß | Risk measure | Insolvenz | Insolvency |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1080/23322039.2024.2338971 [DOI] |
Classification: | C12 - Hypothesis Testing ; C35 - Discrete Regression and Qualitative Choice Models ; C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; D81 - Criteria for Decision-Making under Risk and Uncertainty ; G32 - Financing Policy; Capital and Ownership Structure |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Assessment of model risk due to the use of an inappropriate parameter estimator
Seitshiro, Modisane B., (2020)
-
Crypto exchanges and credit risk : modeling and forecasting the probability of closure
Fantazzini, Dean, (2021)
-
Jacobs, Michael <Jr.>, (2022)
- More ...
-
Assessment of model risk due to the use of an inappropriate parameter estimator
Seitshiro, Modisane B., (2020)
-
Assessment of model risk due to the use of an inappropriate parameter estimator
Seitshiro, Modisane B., (2020)
- More ...