Cross-temporal forecast reconciliation at digital platforms with machine learning
| Year of publication: |
2025
|
|---|---|
| Authors: | Rombouts, Jeroen V. K. ; Ternes, Marie ; Wilms, Ines |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 41.2025, 1, p. 321-344
|
| Subject: | Cross-temporal aggregation | Demand forecasting | Forecast reconciliation | Hierarchical time series | Machine learning | Platform econometrics | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Digitale Plattform | Digital platform | Zeitreihenanalyse | Time series analysis | Prognose | Forecast | Ökonometrie | Econometrics | Theorie | Theory |
-
Do global forecasting models require frequent retraining?
Zanotti, Marco, (2025)
-
Rodrigues, Lucas, (2022)
-
On the stability of global forecasting models
Zanotti, Marco, (2025)
- More ...
-
Multivariate volatility forecasts for stock market indices
Wilms, Ines, (2021)
-
Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms
Hu, Yu Jeffrey, (2023)
-
Fast forecasting of unstable data streams for on-demand service platforms
Hu, Yu Jeffrey, (2025)
- More ...