Data-driven COVID-19 vaccine development for Janssen
Year of publication: |
2023
|
---|---|
Authors: | Bertsimas, Dimitris ; Li, Michael Lingzhi ; Liu, Xinggang ; Xu, Jennings ; Khan, Najat |
Published in: |
INFORMS journal on applied analytics. - Catonsville, Md. : INFORMS, ISSN 2644-0873, ZDB-ID 2962133-1. - Vol. 53.2023, 1, p. 70-84
|
Subject: | clinical trial | COVID-19 | Edelman Award | epidemiology | location selection | machine learning | real-world evidence | vaccine | Coronavirus | Impfung | Vaccination | Künstliche Intelligenz | Artificial intelligence | Arzneimittel | Pharmaceuticals | Gesundheitspolitik | Health policy | Pharmakologie | Pharmacology | Epidemie | Epidemic | Wirkungsanalyse | Impact assessment | Infektionsschutz | Infection control | Welt | World |
-
COVID-19 pandemic and vaccine imperialism
Seretis, Stergios A., (2025)
-
The vaccine industry after the COVID-19 pandemic : an international perspective
Lobo, Félix, (2024)
-
COVID-19 : prediction, prevalence, and the operations of vaccine allocation
Bennouna, Amine, (2023)
- More ...
-
Accelerating Vaccine Innovation for Emerging Infectious Diseases via Parallel Discovery
Barberio, Joseph, (2023)
-
Scalable holistic linear regression
Bertsimas, Dimitris, (2020)
-
From predictions to prescriptions : a data-driven response to COVID-19
Bertsimas, Dimitris, (2021)
- More ...