Data-driven jump detection thresholds for application in jump regressions
Year of publication: |
June 2018
|
---|---|
Authors: | Davies, Robert ; Tauchen, George Eugene |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 6.2018, 2, p. 1-25
|
Subject: | efficient estimation | high-frequency data | jumps | semimartingale | specification test | stochastic volatility | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Schätztheorie | Estimation theory | Schätzung | Estimation | Regressionsanalyse | Regression analysis | Nichtparametrisches Verfahren | Nonparametric statistics | Zeitreihenanalyse | Time series analysis | Martingal | Martingale | Monte-Carlo-Simulation | Monte Carlo simulation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics6020016 [DOI] hdl:10419/195453 [Handle] |
Classification: | C5 - Econometric Modeling ; C52 - Model Evaluation and Testing ; G12 - Asset Pricing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Data-driven jump detection thresholds for application in jump regressions
Davies, Robert, (2015)
-
Li, Jia, (2017)
-
Jump factor models in large cross‐sections
Li, Jia, (2019)
- More ...
-
Data-driven jump detection thresholds for application in jump regressions
Davies, Robert, (2015)
-
Finite state Markov chain approximations to univariate and vector autoregressions
Tauchen, George Eugene, (1986)
-
Tauchen, George Eugene, (1986)
- More ...