Data-driven preference learning methods for sorting problems with multiple temporal criteria
| Year of publication: |
2025
|
|---|---|
| Authors: | Li, Yijun ; Guo, Mengzhuo ; Kadziński, Miłosz ; Zhang, Qingpeng ; Xu, Chenxi |
| Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 323.2025, 3 (16.6.), p. 918-937
|
| Subject: | Deep learning | Multiple criteria analysis | Preference learning | Recurrent neural networks | Sorting | Temporal criteria | Neuronale Netze | Neural networks | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Lernprozess | Learning process | Präferenztheorie | Theory of preferences | Lernen | Learning |
-
Li, Zhuolin, (2025)
-
Learning the thresholds in the ORESTE method from historical preference information
Liao, Huchang, (2023)
-
Efficient and sparse neural networks by pruning weights in a multiobjective learning approach
Reiners, Malena, (2022)
- More ...
-
A hybrid machine learning framework for analyzing human decision-making through learning preferences
Guo, Mengzhuo, (2021)
-
Guo, Mengzhuo, (2020)
-
Li, Lifang, (2021)
- More ...