Data-driven test strategy for COVID-19 using machine learning : a study in Lahore, Pakistan
Year of publication: |
2022
|
---|---|
Authors: | Huang, Chuanli ; Wang, Min ; Rafaqat, Warda ; Shabbir, Salman ; Lian, Liping ; Zhang, Jun ; Lo, Siuming ; Song, Weiguo |
Published in: |
Socio-economic planning sciences : the international journal of public sector decision-making. - Amsterdam [u.a.] : Elsevier, ISSN 0038-0121, ZDB-ID 208905-1. - Vol. 80.2022, p. 1-11
|
Subject: | COVID-19 | Logistic regression | Machine learning | Policy making | Spatial analysis | Test strategy | Time series analysis | Künstliche Intelligenz | Artificial intelligence | Coronavirus | Pakistan | Zeitreihenanalyse |
-
From data to action : empowering COVID-19 monitoring and forecasting with intelligent algorithms
Charles, Vincent, (2024)
-
Poza, Carlos, (2023)
-
EAEU balancing hydropower capacity issues in terms of global pandemic consequences
Andronova, I. V., (2022)
- More ...
-
Long-term forecast and policy discussion on China's carbon emissions
Wang, Min, (2023)
-
Health assessment and prognostics based on higher‐order hidden semi‐Markov models
Liao, Ying, (2020)
-
Wei, Xuhua, (2023)
- More ...