Data science for supply chain forecasting
Year of publication: |
[2021] ; 2nd edition
|
---|---|
Authors: | Vandeput, Nicolas |
Institutions: | Walter de Gruyter GmbH & Co. KG (publisher) |
Publisher: |
Berlin : De Gruyter |
Subject: | Lieferkette | Supply chain | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Supply Chain Management | Nachfrageermittlung | Maschinelles Lernen | Datenmanagement |
Description of contents: | Table of Contents [gbv.de] ; Description [degruyter.com] ; Description [degruyter.com] |
Extent: | 1 Online-Ressource (XXVIII, 282 Seiten) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Mode of access: Internet via World Wide Web In English |
ISBN: | 978-3-11-067112-4 ; 978-3-11-067120-9 ; 978-3-11-067110-0 |
Other identifiers: | 10.1515/9783110671124 [DOI] 10.1515/9783110671124?locatt=mode:legacy [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Data science for supply chain forecasting
Vandeput, Nicolas, (2021)
-
Slimani, Ilham, (2017)
-
Demand and supply integration : the key to world-class demand forecasting
Moon, Mark A., (2018)
- More ...
-
Data science for supply chain forecasting
Vandeput, Nicolas, (2021)
-
Inventory optimization : models and simulations
Vandeput, Nicolas, (2020)
-
Inventory optimization : models and simulations
Vandeput, Nicolas, (2020)
- More ...