Data transforms with exponential smoothing methods of forecasting
Year of publication: |
2014
|
---|---|
Authors: | Beaumont, Adrian N. |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 30.2014, 4, p. 918-927
|
Subject: | State space models | Performance measures | ANOVA | Maximum likelihood | AIC | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory | Performance-Messung | Performance measurement |
-
Trend-cycle decomposition and forecasting using Bayesian multivariate unobserved components
Jahan-Parvar, Mohammad R., (2024)
-
l 1 - penalized likelihood smoothing of volatility processes allowing for abrupt changes
Neto, David, (2009)
-
An hourly periodic state space model for modelling French national electricity load
Dordonnat, V., (2008)
- More ...
-
Data transforms with exponential smoothing methods of forecasting
Beaumont, Adrian N., (2014)
-
Forecasting compositional time series : a state space approach
Snyder, Ralph D., (2017)
- More ...