Debiased/double machine learning for instrumental variable quantile regressions
Year of publication: |
2021
|
---|---|
Authors: | Chen, Jau-er ; Huang, Chien-Hsun ; Tien, Jia-Jyun |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 9.2021, 2, Art.-No. 15, p. 1-18
|
Subject: | double machine learning | instrumental variable | lasso | quantile regression | quantile treatment effect | Regressionsanalyse | Regression analysis | Künstliche Intelligenz | Artificial intelligence | IV-Schätzung | Instrumental variables | Kausalanalyse | Causality analysis | Theorie | Theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics9020015 [DOI] hdl:10419/247605 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Causal random forests model using instrumental variable quantile regression
Chen, Jau-er, (2019)
-
Estimation of complier expected shortfall treatment effects with a binary instrumental variable
Wei, Bo, (2024)
-
A comparison of two qantile models with endogeneity
Wüthrich, Kaspar, (2014)
- More ...
-
Debiased/double machine learning for instrumental variable quantile regressions
Chen, Jau-er, (2021)
-
Hu, Wen-Yu, (2010)
-
Causal random forests model using instrumental variable quantile regression
Chen, Jau-er, (2019)
- More ...