Deep learning and statistical models for forecasting transportation demand : a case study of multiple distribution centers
| Year of publication: |
2023
|
|---|---|
| Authors: | Mamede, Fábio Polola ; Silva, Roberto Fray da ; De Brito, Irineu ; Yoshizaki, Hugo Tsugunobu Yoshida ; Hino, Celso Mitsuo ; Cugnasca, Carlos Eduardo |
| Published in: |
Logistics. - Basel : MDPI AG, ISSN 2305-6290, ZDB-ID 2908937-2. - Vol. 7.2023, 4, Art.-No. 86, p. 1-19
|
| Subject: | ARIMA | data preprocessing | LSTM | supply chain management | transportation demand forecasting | Lieferkette | Supply chain | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Theorie | Theory |
-
Lu, Tao, (2023)
-
Assessing data collection strategies for VMI under intermittent demand
Ducharme, Corey, (2024)
-
Forecast value added in demand planning
Fildes, Robert, (2025)
- More ...
-
NGO's supplier selection and procurement cost reduction with multi-dimensional auctions
Giacon, J., (2021)
-
Temporary facility location problem in humanitarian logistics : a systematic literature review
Quispe, María Fernanda Carnero, (2025)
-
Humanitarian logistics prioritization models : a systematic literature review
Quispe, María Fernanda Carnero, (2024)
- More ...