Deep Learning Based Dynamic Implied Volatility Surface
Year of publication: |
[2021]
|
---|---|
Authors: | Bloch, Daniel Alexandre ; Böök, Arthur |
Publisher: |
[S.l.] : SSRN |
Subject: | Volatilität | Volatility | Optionspreistheorie | Option pricing theory | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (31 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 12, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3952842 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism
Chen, Shengli, (2020)
-
Deep Hedging : Learning Risk-Neutral Implied Volatility Dynamics
Buehler, Hans, (2021)
-
Bernales, Alejandro, (2013)
- More ...
-
Predicting Future Implied Volatility Surface Using TDBP-Learning
Bloch, Daniel Alexandre, (2021)
-
Predicting Conditional Expectations For Path-Dependent Events Using TDBP-Learning
Bloch, Daniel Alexandre, (2020)
-
The Forecasting Power of Short-term Options
Böök, Arthur, (2020)
- More ...