Deep Learning Based Dynamic Implied Volatility Surface
| Year of publication: |
[2021]
|
|---|---|
| Authors: | Bloch, Daniel Alexandre ; Böök, Arthur |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Volatilität | Volatility | Optionspreistheorie | Option pricing theory | Lernprozess | Learning process |
| Extent: | 1 Online-Ressource (31 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 12, 2021 erstellt |
| Other identifiers: | 10.2139/ssrn.3952842 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Gaussian clustering and jump-diffusion models of electricity prices : a deep learning analysis
Mari, Carlo, (2021)
-
Huang, Jing-Zhi, (2021)
-
Growth uncertainty, rational learning, and option prices
Babiak, Mykola, (2021)
- More ...
-
Predicting Conditional Expectations For Path-Dependent Events Using TDBP-Learning
Bloch, Daniel Alexandre, (2020)
-
Predicting Future Implied Volatility Surface Using TDBP-Learning
Bloch, Daniel Alexandre, (2021)
-
The Forecasting Power of Short-term Options
Böök, Arthur, (2020)
- More ...