Deep learning for credit scoring : do or don't?
Year of publication: |
2021
|
---|---|
Authors: | Gunnarsson, Björn Rafn ; Vanden Broucke, Seppe ; Baesens, Bart ; Óskarsdóttir, María ; Lemahieu, Wilfried |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 295.2021, 1 (16.11.), p. 292-305
|
Subject: | Bayesian statistical testing | Credit scoring | Decision support systems | Deep learning | Risk analysis | Kreditwürdigkeit | Credit rating | Management-Informationssystem | Management information system | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Theorie | Theory | Bayes-Statistik | Bayesian inference |
-
A comparative analysis of the UK and Italian small businesses using generalised extreme value models
Andreeva, Galina, (2016)
-
Recovery process optimization using survival regression
Witzany, Jiří, (2022)
-
A Deep Neural Network (DNN) based classification model in application to loan default prediction
Bayraci, Selçuk, (2019)
- More ...
-
Closing the gap between experts and novices using analytics-as-a-service : an experimental study
Lismont, Jasmien, (2019)
-
Straightforward Petri Net-based Event Log Generation in ProM
Vanden Broucke, Seppe, (2014)
-
Straightforward Petri netbased event log generation in ProM
Vanden Broucke, Seppe, (2014)
- More ...