Deep learning in asset pricing
Year of publication: |
2024
|
---|---|
Authors: | Chen, Luyang ; Pelger, Markus ; Zhu, Jason |
Published in: |
Management science : journal of the Institute for Operations Research and the Management Sciences. - Hanover, Md. : INFORMS, ISSN 1526-5501, ZDB-ID 2023019-9. - Vol. 70.2024, 2, p. 714-750
|
Subject: | big data | conditional asset pricing model | cross-section of expected returns | deep learning | GMM | hidden states | machine learning | no arbitrage | nonlinear factor model | stock returns | CAPM | Künstliche Intelligenz | Artificial intelligence | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Lernprozess | Learning process | Big Data | Big data | Kapitalmarkttheorie | Financial economics | Kapitalmarktrendite | Capital market returns | Lernen | Learning |
-
Asset returns in deep learning methods : an empirical analysis on SSE 50 and CSI 300
Li, Weiping, (2020)
-
Autoencoder asset pricing models
Gu, Shihao, (2021)
-
Modeling heterogeneity in firm-level return predictability with machine learning
Evgeniou, Theodoros, (2020)
- More ...
-
Deep Learning in Asset Pricing
Chen, Luyang, (2020)
-
Internet Appendix for Deep Learning in Asset Pricing
Chen, Luyang, (2020)
-
Forest Through the Trees : Building Cross-Sections of Stock Returns
Bryzgalova, Svetlana, (2020)
- More ...