A deep reinforcement learning based multi-agent simulation optimization approach for IGV bidirectional task allocation and charging joint scheduling in automated container terminals
| Year of publication: |
2025
|
|---|---|
| Authors: | Yang, Caiyun ; Zhang, Yu ; Wang, Junjie ; He, Lijun ; Wu, Han |
| Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 183.2025, Art.-No. 107189, p. 1-21
|
| Subject: | Agent-based simulation | Automated container terminals | Deep reinforcement learning | Intelligent guided vehicle | Task allocation | Containerterminal | Container terminal | Simulation | Agentenbasierte Modellierung | Agent-based modeling | Theorie | Theory | Automatisierung | Automation | Scheduling-Verfahren | Scheduling problem | Lernprozess | Learning process | Containerverkehr | Container transport | Algorithmus | Algorithm |
-
Gong, Lin, (2024)
-
Zhuang, Zilong, (2022)
-
Naeem, Doaa, (2022)
- More ...
-
Cai, Lei, (2023)
-
Han, Wu, (2020)
-
Are the Wealthy Also Healthy? An Empirical Evaluation of the Financial Health of Chinese Foundations
Wang, Qun, (2018)
- More ...