Deep reinforcement learning for one-warehouse multi-retailer inventory management
| Year of publication: |
2024
|
|---|---|
| Authors: | Kaynov, Illya ; Van Knippenberg, Marijn ; Menkovski, Vlado ; Breemen, Albert van ; Jaarsveld, Willem van |
| Published in: |
International journal of production economics. - Amsterdam [u.a.] : Elsevier Science, ISSN 1873-7579, ZDB-ID 2020829-7. - Vol. 267.2024, Art.-No. 109088, p. 1-13
|
| Subject: | Allocation policies | Deep Reinforcement Learning | Multi-echelon inventory control | Lagermanagement | Warehouse management | Lagerhaltungsmodell | Inventory model | Theorie | Theory | Bestandsmanagement | Inventory management | Lernen | Learning | Algorithmus | Algorithm |
-
Deep reinforcement learning for inventory control : a roadmap
Boute, Robert N., (2022)
-
Performance of deep reinforcement learning algorithms in two-echelon inventory control systems
Stranieri, Francesco, (2024)
-
Approximation algorithms for dynamic inventory management on networks
DeValve, Levi, (2025)
- More ...
-
Jaarsveld, Willem van, (2024)
-
The Impact of Committing to Customer Orders in Online Retail
Figueira, Gonçalo, (2020)
-
Long-term resource planning in the high-tech industry : capacity or inventory?
Smirnov, Dina, (2021)
- More ...