Derivation and application of some fractional black-scholes equations driven by fractional G-Brownian motion
| Year of publication: |
2023
|
|---|---|
| Authors: | Guo, Changhong ; Fang, Shaomei ; He, Yong |
| Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 61.2023, 4, p. 1681-1705
|
| Subject: | European option pricing | Fractional Black-Scholes equation | Fractional G-Brownian motion | Taylor's series of fractional order | Uncertain volatility | Black-Scholes-Modell | Black-Scholes model | Optionspreistheorie | Option pricing theory | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Derivat | Derivative | Optionsgeschäft | Option trading | Zeitreihenanalyse | Time series analysis |
-
Kilianová, Soňa, (2018)
-
Kolokolʹcov, Vassilij N., (2013)
-
Short-dated smile under rough volatility : asymptotics and numerics
Friz, Peter K., (2022)
- More ...
-
Non-Zero-Sum Investment-Reinsurance Game with Delay and Ambiguity Aversion
He, Yong, (2023)
-
Optimal Reinsurance-Investment Game for Two Insurers with Sahara Utilities Under Correlated Markets
Chen, Dengsheng, (2022)
-
An analytical solution for the robust investment-reinsurance strategy with general utilities
He, Yong, (2022)
- More ...