Designing a resilient humanitarian supply chain by considering viability under uncertainty : a machine learning embedded approach
| Year of publication: |
2025
|
|---|---|
| Authors: | Yılmaz, Ömer Faruk ; Guan, Yongpei ; Gürsoy Yılmaz, Beren |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ISSN 1878-5794, ZDB-ID 2013782-5. - Vol. 194.2025, Art.-No. 103943, p. 1-24
|
| Subject: | Genetic algorithm | Humanitarian supply chain | Machine learning | Resilience | Stochastic programming | Viability | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Humanitäre Hilfe | Humanitarian aid | Evolutionärer Algorithmus | Evolutionary algorithm | Coping-Strategie | Coping strategy | Risikomanagement | Risk management | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm |
-
Kasin Ransikarbum, (2022)
-
A comprehensive solution strategy for right-sized packaging
Peck, John C., (2023)
-
Porselvi, S., (2018)
- More ...
-
Yılmaz, Ömer Faruk, (2025)
-
Seru scheduling problem with lot streaming and worker transfers : a multi-objective approach
Gürsoy Yılmaz, Beren, (2025)
-
Yılmaz, Ömer Faruk, (2023)
- More ...