Detecting ARCH Effects in Non-Gaussian Time Series
Engles ARCH test has become the standard test for ARCH effects in applied work. Under non-normality the true rejection probability of this test can differ substantially from the nominal level, however. Bootstrap and Monte Carlo versions of the test may then be used instead. This paper proposes an alternative test procedure. The new test exploits the empirical distribution of the data and an extended probability integral transformation. The test is compared with the former tests in Monte Carlo experiments. Under normality, the new test works as well as the conventional Monte Carlo test and the bootstrap. Under non-normality, the test tends to be more accurate and more powerful than the bootstrapped ARCH test. The procedure is then used to test for ARCH effects in S&P 500 returns sampled at different frequencies. In contrast to the standard and the bootstrapped ARCH tests, the new test detects ARCH effects in the transformed low-frequency returns. Copyright The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.
Year of publication: |
2008
|
---|---|
Authors: | Raunig, Burkhard |
Published in: |
Journal of Financial Econometrics. - Society for Financial Econometrics - SoFiE, ISSN 1479-8409. - Vol. 6.2008, 2, p. 271-289
|
Publisher: |
Society for Financial Econometrics - SoFiE |
Saved in:
Saved in favorites
Similar items by person
-
Testing for longer horizon predictability of return volatility with an application to the German DAX
Raunig, Burkhard, (2003)
-
Finanzmärkte und realwirtschaftliche Entwicklung
Raunig, Burkhard, (2012)
-
Raunig, Burkhard, (2023)
- More ...