Detecting corporate tax evasion using a hybrid intelligent system : a case study of Iran
Year of publication: |
May 2017
|
---|---|
Authors: | Rahimikia, Eghbal ; Mohammadi, Shapour ; Rahmani, Teymur ; Ghazanfari, Mehdi |
Published in: |
International journal of accounting information systems. - Amsterdam [u.a.] : Elsevier, ISSN 1467-0895, ZDB-ID 2211804-4. - Vol. 25.2017, p. 1-17
|
Subject: | Corporate tax evasion detection | Data mining | Hybrid intelligent system | Support vector machine | Neural network | Harmony search | Neuronale Netze | Neural networks | Data Mining | Steuervermeidung | Tax avoidance | Mustererkennung | Pattern recognition | Steuerstrafrecht | Criminal tax law | Iran | Theorie | Theory | Unternehmensbesteuerung | Corporate taxation | Expertensystem | Expert system | Künstliche Intelligenz | Artificial intelligence | Steuerflucht | Cross-border tax evasion |
-
Is artificial intelligence really more accurate in predicting bankruptcy?
Letkovský, Stanislav, (2023)
-
Sivasankar, E., (2019)
-
Estimation of cross-lingual news similarities using text-mining methods
Wang, Zhouhao, (2018)
- More ...
-
Forecast accuracy of the linear and nonlinear autoregressive models in macroeconomic modeling
Taiebnia, Ali, (2023)
-
Behaviour of stock markets' memories
Mohammadi, Shapour, (2011)
-
Fractional return and fractional CAPM
Raei, Reza, (2008)
- More ...