Detecting faking responses during empirical research : a study in a developing country environment
Purpose: Several research studies on Lean Six Sigma (LSS) have been done using the survey methodology. However, the use of surveys often relies on the measurement of variables, which cannot be directly observed, with attendant measurement errors. The purpose of this study is to develop a methodological framework consisting of a combination of four tools for identifying and assessing measurement error during survey research. Design/methodology/approach: This paper evaluated the viability of the framework through an experimental study on the assessment of project management success in a developing country environment. The research design combined a control group, pretest and post-test measurements with structural equation modeling that enabled the assessment of differences between honest and fake survey responses. This paper tested for common method variance (CMV) using the chi-square test for the difference between unconstrained and fully constrained models. Findings: The CMV results confirmed that there was significant shared variance among the different measures allowing us to distinguish between trait and faking responses and ascertain how much of the observed process measurement is because of measurement system variation as opposed to variation arising from the study’s constructs. Research limitations/implications: The study was conducted in one country, and hence, the results may not be generalizable. Originality/value: Measurement error during survey research, if not properly addressed, can lead to incorrect conclusions that can harm theory development. It can also lead to inappropriate recommendations for practicing managers. This study provides findings from a framework developed and assessed in a LSS project environment for identifying faking responses. This paper provides a robust framework consisting of four tools that provide guidelines on distinguishing between fake and trait responses. This tool should be of great value to researchers.
Year of publication: |
2021
|
---|---|
Authors: | Tetteh, Godson A. ; Amoako-Gyampah, Kwasi ; Kwarteng, Amoako |
Published in: |
International Journal of Lean Six Sigma. - Emerald, ISSN 2040-4166, ZDB-ID 2553041-0. - Vol. 12.2021, 5 (12.03.), p. 889-922
|
Publisher: |
Emerald |
Saved in:
Saved in favorites
Similar items by person
-
Assessing indicators of motivation for learning in a TQM class
Tetteh, Godson A., (2015)
-
Evaluating university leadership performance using Lean Six Sigma framework
Tetteh, Godson A., (2019)
-
Improving learning outcome using Six Sigma methodology
Tetteh, Godson A., (2015)
- More ...