Discovering the drivers of stock market volatility in a data-rich world
Year of publication: |
2023
|
---|---|
Authors: | Chun, Dohyun ; Cho, Hoon ; Ryu, Doojin |
Published in: |
Journal of international financial markets, institutions & money. - Amsterdam : Elsevier, ISSN 1042-4431, ZDB-ID 1117317-8. - Vol. 82.2023, p. 1-24
|
Subject: | Asset allocation | Cross-market studies | Global financial markets | Hetergeneous autoregressive model | LASSO | Volatility forecasting | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Welt | World | Portfolio-Management | Portfolio selection | Internationaler Finanzmarkt | International financial market | Finanzmarkt | Financial market | Aktienmarkt | Stock market | ARCH-Modell | ARCH model | Autokorrelation | Autocorrelation |
-
Market momentum amplifies market volatility risk : evidence from China's equity market
Liang, Chao, (2023)
-
Cross-asset time-series momentum : crude oil volatility and global stock markets
Fernandez-Perez, Adrian, (2023)
-
Estimation of value-at-Risk on Romanian stock exchange using volatility forecasting models
Opreana, Claudiu Ilie, (2013)
- More ...
-
Discovering the Drivers of Stock Market Volatility in a Data-Rich World
Cho, Hoon, (2022)
-
Economic indicators and stock market volatility in an emerging economy
Chun, Dohyun, (2020)
-
Chun, Dohyun, (2018)
- More ...