Discrete nonlinear optimization by state-space decompositions
| Year of publication: |
October 2018
|
|---|---|
| Authors: | Bergman, David ; Cire, Andre A. |
| Published in: |
Management science : journal of the Institute for Operations Research and the Management Sciences. - Catonsville, MD : INFORMS, ISSN 0025-1909, ZDB-ID 206345-1. - Vol. 64.2018, 10, p. 4700-4720
|
| Subject: | nonlinear | algorithms | programming | integer | network-graphs | dynamic programming | optimal control | finite state | Mathematische Optimierung | Mathematical programming | Dynamische Optimierung | Dynamic programming | Nichtlineare Regression | Nonlinear regression | Algorithmus | Algorithm | Nichtlineare Optimierung | Nonlinear programming | Markov-Kette | Markov chain | Kontrolltheorie | Control theory |
-
Multistate Bayesian control chart over a finite horizon
Wang, Jue, (2015)
-
Finite-memory strategies in POMDPs with long-run average objectives
Chatterjee, Krishnendu, (2022)
-
PDENLPModels.jl : an NLPModel API for optimization problems with PDE-constraints
Migot, Tangi, (2022)
- More ...
-
Network models for multiobjective discrete optimization
Bergman, David, (2022)
-
On the minimum chordal completion polytope
Bergman, David, (2019)
-
An exact algorithm for the quadratic multiknapsack problem with an application to event seating
Bergman, David, (2019)
- More ...