Discrete random probability measures: a general framework for nonparametric Bayesian inference
A unifying framework for Bayesian analysis in discrete nonparametric settings is proposed. To this aim, a general class of nonparametric discrete prior distributions on an arbitrary sample space is introduced. The general structure of the posterior and predictive distributions and an explicit updating mechanism for the posterior are developed.
Year of publication: |
2004
|
---|---|
Authors: | Ongaro, Andrea ; Cattaneo, Carla |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 67.2004, 1, p. 33-45
|
Publisher: |
Elsevier |
Keywords: | Nonparametric priors Generalized Dirichlet process Mixture representation Random weights |
Saved in:
Saved in favorites
Similar items by person
-
Il settore orafo : strategie di prodotto, di marketing e di area
Cattaneo, Carla, (1993)
-
Exact Inference for Random Dirichlet Means
Hjort, Nils, (2005)
-
On the distribution of random Dirichlet jumps
Hjort, Nils Lid, (2006)
- More ...