Distributed multi-agent reinforcement learning approach for energy-saving optimization under disturbance conditions
| Year of publication: |
2025
|
|---|---|
| Authors: | Wang, Dahan ; Wu, Jianjun ; Chang, Ximing ; Yin, Haodong |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ISSN 1878-5794, ZDB-ID 2013782-5. - Vol. 200.2025, Art.-No. 104180, p. 1-22
|
| Subject: | Actor-critic architecture | Multi-agent reinforcement learning | Station disturbance scenarios | Timetable optimization | Train energy conservation | Energieeinsparung | Energy conservation | Agentenbasierte Modellierung | Agent-based modeling | Theorie | Theory | Lernprozess | Learning process | Lernen | Learning | Mathematische Optimierung | Mathematical programming | Linienverkehr | Scheduled transport |
-
Lee, Chia-Yen, (2025)
-
Approximated multi-agent fitted Q iteration
Lesage-Landry, Antoine, (2022)
-
Multi-agent hierarchical reinforcement learning for energy management
Jendoubi, Imen, (2021)
- More ...
-
Chang, Ximing, (2022)
-
Model and algorithm of coordinated flow controlling with station-based constraints in a metro system
Zhang, Ping, (2021)
-
Robust bus bridging service design under rail transit system disruptions
Liang, Jinpeng, (2019)
- More ...