Diverging Roads : Theory-Based vs. Machine Learning-Implied Stock Risk Premia
Year of publication: |
2020
|
---|---|
Authors: | Grammig, Joachim |
Other Persons: | Hanenberg, Constantin (contributor) ; Schlag, Christian (contributor) ; Sönksen, Jantje (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Risikoprämie | Risk premium | Theorie | Theory | Börsenkurs | Share price | Künstliche Intelligenz | Artificial intelligence |
Extent: | 1 Online-Ressource (71 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 12, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3536835 [DOI] |
Classification: | C53 - Forecasting and Other Model Applications ; c58 ; G12 - Asset Pricing ; G17 - Financial Forecasting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Diverging roads: theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2020)
-
A penalized two-pass regression to predict stock returns with time-varying risk premia
Bakalli, Gaetan, (2021)
-
Confident Risk Premia : Economics and Econometrics of Machine Learning Uncertainties
Allena, Rohit, (2021)
- More ...
-
Diverging roads: Theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2020)
-
Diverging roads: theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2020)
-
Diverging roads : theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2025)
- More ...