Do Industries Predict Stock Market Volatility? A High Frequency Perspective Based on a Machine Learning Approach
Year of publication: |
[2023]
|
---|---|
Authors: | Niu, Zibo ; Demirer, Riza ; Suleman, Mouhammed Tahir ; Zhang, Hongwei ; Zhu, Xuehong |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Aktienmarkt | Stock market | Börsenkurs | Share price |
Extent: | 1 Online-Ressource (1 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 20, 2023 erstellt |
Other identifiers: | 10.2139/ssrn.4399708 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Nõu, Anders, (2023)
-
Predictive Regressions for Aggregate Stock Market Volatility with Machine Learning
Díaz, Juan, (2021)
-
Irrational fads, short-term memory emulation, and asset predictability
Bekiros, Stelios D., (2013)
- More ...
-
Do industries predict stock market volatility? : evidence from machine learning models
Niu, Zibo, (2024)
-
Do Geopolitical Risks Affect Volatility Forecasts for Crude Oil Futures? A Regime Switching Approach
Zhu, Xuehong, (2022)
-
Cross-sectional return dispersion and stock market volatility : evidence from high-frequency data
Niu, Zibo, (2023)
- More ...