Does the estimation of the propensity score by machine learning improve matching estimation? : the case of Germany's programmes for long term unemployed
Daniel Goller, Michael Lechner, Andreas Moczall, Joachim Wolff
Year of publication: |
2020
|
---|---|
Authors: | Goller, Daniel ; Lechner, Michael ; Moczall, Andreas ; Wolff, Joachim |
Published in: |
Labour economics : official journal of the European Association of Labour Economists. - Amsterdam [u.a.] : Elsevier, ISSN 0927-5371, ZDB-ID 1167233-X. - Vol. 65.2020
|
Subject: | active labour market policy | causal machine learning | Programme evaluation | propensity score | radius matching | treatment effects | Deutschland | Germany | Arbeitsmarktpolitik | Labour market policy | Künstliche Intelligenz | Artificial intelligence | Kausalanalyse | Causality analysis | Wirkungsanalyse | Impact assessment | Matching | Schätztheorie | Estimation theory | Langzeitarbeitslosigkeit | Long-term unemployment | Mikroökonometrie | Microeconometrics | Schätzung | Estimation |
Saved in:
Online Resource