Drivers of the next-minute Bitcoin price using sparse regressions
Year of publication: |
2024
|
---|---|
Authors: | Gurrib, Ikhlaas ; Kamalov, Firuz ; Starkova, Olga ; Elshareif, Elgilani Eltahir ; Contu, Davide |
Published in: |
Studies in economics and finance. - Bingley : Emerald, ISSN 1755-6791, ZDB-ID 2070355-7. - Vol. 41.2024, 2, p. 410-431
|
Subject: | Bitcoin price prediction | Cross-market information | High frequency | Lasso | Ridge | Virtuelle Währung | Virtual currency | Regressionsanalyse | Regression analysis | Prognoseverfahren | Forecasting model | Preis | Price | Börsenkurs | Share price | Finanzmarkt | Financial market |
-
Predicting intraday cryptocurrency returns - A sparse signals approach
Lalwani, Vaibhav, (2021)
-
How well do investor sentiment and ensemble learning predict Bitcoin prices?
Hájek, Petr, (2023)
-
Forecasting the price of Bitcoin using deep learning
Liu, Mingxi, (2021)
- More ...
-
Can the leading US energy stock prices be predicted using the Ichimoku cloud?
Gurrib, Ikhlaas, (2021)
-
High frequency return and risk patterns in US sector ETFs during COVID-19
Gurrib, Ikhlaas, (2022)
-
Optimizing the performance of the fractal adaptive moving average strategy : the case of EUR/USD
Gurrib, Ikhlaas, (2016)
- More ...