Dual-stage ensemble approach using online knowledge distillation for forecasting carbon emissions in the electric power industry
Year of publication: |
2023
|
---|---|
Authors: | Lin, Ruibin ; Lv, Xing ; Hu, Huanling ; Ling, Liwen ; Yu, Zehui ; Zhang, Dabin |
Published in: |
Data science and management : DSM. - [Amsterdam] : Elsevier B.V., ISSN 2666-7649, ZDB-ID 3108238-5. - Vol. 6.2023, 4, p. 227-238
|
Subject: | Carbon emissions | Deep neural network | Electric power | Knowledge distillation | Time series forecasting | Treibhausgas-Emissionen | Greenhouse gas emissions | Elektrizitätswirtschaft | Electric power industry | Prognoseverfahren | Forecasting model | Luftverschmutzung | Air pollution | Neuronale Netze | Neural networks | Zeitreihenanalyse | Time series analysis | Energiekonsum | Energy consumption | Energieprognose | Energy forecast |
-
Sanusi, Gbenga Peter, (2023)
-
Das Lotsenprojekt - wie man wirkliche Leuchttürme findet
Mauch, Wolfgang, (2007)
-
Forecasting Total Energy’s CO2 Emissions
Iania, Leonardo, (2022)
- More ...
-
Can online search data improve the forecast accuracy of pork price in China?
Ling, Liwen, (2020)
-
A hybrid model considering cointegration for interval‐valued pork price forecasting in China
Zhang, Dabin, (2020)
-
Digital finance and regional economic resilience : theoretical framework and empirical test
Yu, Zehui, (2023)
- More ...