Efficient decentralized multi-agent learning in asymmetric bipartite queueing systems
Year of publication: |
2024
|
---|---|
Authors: | Freund, Daniel ; Lykouris, Thodoris ; Weng, Wentao |
Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 72.2024, 3, p. 1049-1070
|
Subject: | Machine Learning and Data Science | multiarmed bandits | decentralization | service systems | Künstliche Intelligenz | Artificial intelligence | Warteschlangentheorie | Queueing theory | Dezentralisierung | Decentralization | Agentenbasierte Modellierung | Agent-based modeling | Lernprozess | Learning process | Lernen | Learning | Algorithmus | Algorithm |
-
V-learning : a simple, efficient, decentralized algorithm for multiagent reinforcement learning
Jin, Chi, (2024)
-
Hub-and-spoke network design under congestion : a learning based metaheuristic
Karimi-Mamaghan, Maryam, (2020)
-
Artificial intelligence : can seemingly collusive outcomes be avoided?
Abada, Ibrahim, (2023)
- More ...
-
Pricing and optimization in shared vehicle systems : an approximation framework
Banerjee, Siddhartha, (2022)
-
Korruption stürzt Europas Rechtsstaat in die Krise : wie kann die EU dagegen vorgehen?
Freund, Daniel, (2021)
-
Contextual search in the presence of adversarial corruptions
Krishnamurthy, Akshay, (2023)
- More ...