Efficient estimation in conditional single-index regression
Semiparametric single-index regression involves an unknown finite-dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo-maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index and maximize the obtained likelihood. We show that this technique of adaptation yields an asymptotically efficient estimator: it has minimal variance among all estimators.
Year of publication: |
2003
|
---|---|
Authors: | Delecroix, Michel ; Härdle, Wolfgang ; Hristache, Marian |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 86.2003, 2, p. 213-226
|
Publisher: |
Elsevier |
Keywords: | Single-index model Pseudo-maximum likelihood Semiparametric efficiency bound |
Saved in:
Saved in favorites
Similar items by person
-
Efficient estimation in single-index regression
Delecroix, Michel, (1997)
-
Efficient estimation in single-index regression
Delecroix, Michel, (1997)
-
Efficient estimation in single-index regression
Delecroix, Michel, (1997)
- More ...