Efficient importance sampling in mixture frameworks
Year of publication: |
2014
|
---|---|
Authors: | Kleppe, Tore Selland ; Liesenfeld, Roman |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 76.2014, C, p. 449-463
|
Publisher: |
Elsevier |
Subject: | Data augmentation | Dynamic latent variable model | Importance sampling | Marginalized likelihood | Mixture | Monte Carlo | Realized volatility |
-
Efficient high-dimensional importance sampling in mixture frameworks
Kleppe, Tore Selland, (2011)
-
Efficient high-dimensional importance sampling in mixture frameworks
Kleppe, Tore Selland, (2011)
-
Efficient estimation of the link function parameter in a robust Bayesian binary regression model
Roy, Vivekananda, (2014)
- More ...
-
Efficient high-dimensional importance sampling in mixture frameworks
Kleppe, Tore Selland, (2011)
-
Efficient high-dimensional importance sampling in mixture frameworks
Kleppe, Tore Selland, (2011)
-
Estimating the competitive storage model with stochastic trends in commodity prices
Osmundsen, Kjartan Kloster, (2021)
- More ...