Energy poverty prediction and effective targeting for just transitions with machine learning
| Year of publication: |
2023
|
|---|---|
| Authors: | Spandagos, Constantine ; Tovar Reaños, Miguel Angel ; Lynch, Muireann Á. |
| Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 128.2023, p. 1-19
|
| Subject: | Energy poverty prediction | Energy poverty targeting | Machine learning | Just energy transitions | EU member states | Künstliche Intelligenz | Artificial intelligence | Armut | Poverty | Energiewende | Energy transition | Energieversorgung | Energy supply | EU-Staaten | EU countries | Armutsbekämpfung | Poverty reduction | Förderung erneuerbarer Energien | Renewable energy policy |
-
Energy poverty prediction and effective targeting for just transitions with machine learning
Spandagos, Constantine, (2023)
-
Beyond headcount statistics : exploring the utility of energy poverty gap indices in policy design
Croon, T. M., (2023)
-
A framework for policy mix analysis : assessing energy poverty policies
Bessa, Salomé, (2023)
- More ...
-
Energy poverty prediction and effective targeting for just transitions with machine learning
Spandagos, Constantine, (2023)
-
Are energy poverty metrics fit for purpose? : an assessment using behavioural microsimulation
Tovar Reaños, Miguel Angel, (2020)
-
Car ownership and the distributional and environmental policies to reduce driving behavior
Tovar Reaños, Miguel Angel, (2020)
- More ...