Enhancing forecasting accuracy in commodity and financial markets : insights from GARCH and SVR Models
Year of publication: |
2024
|
---|---|
Authors: | Ampountolas, Apostolos |
Published in: |
International Journal of Financial Studies : open access journal. - Basel : MDPI, ISSN 2227-7072, ZDB-ID 2704235-2. - Vol. 12.2024, 3, Art.-No. 59, p. 1-20
|
Subject: | commodity markets | volatility | forecasting | FIGARCH | SVR | volatility forecast | cocoafutures | gold futures | GARCH models | machine learning | Volatilität | Volatility | ARCH-Modell | ARCH model | Prognoseverfahren | Forecasting model | Gold | Künstliche Intelligenz | Artificial intelligence | Rohstoffmarkt | Commodity market | Finanzmarkt | Financial market | Rohstoffderivat | Commodity derivative | Prognose | Forecast | Warenbörse | Commodity exchange |
-
Tang, Yusui, (2023)
-
Uncover the response of the US grain commodity market on El Niño-Southern Oscillation
Su, Yuandong, (2022)
-
Forecasting volatility in commodity markets with long-memory models
Alfeus, Mesias, (2022)
- More ...
-
Peer-to-peer marketplaces : a study on consumer purchase behavior
Ampountolas, Apostolos, (2019)
-
Forecasting hotel demand uncertainty using time series Bayesian VAR models
Ampountolas, Apostolos, (2019)
-
Ampountolas, Apostolos, (2022)
- More ...