Ensemble MCMC Sampling for Robust Bayesian Inference
Year of publication: |
2022
|
---|---|
Authors: | Böhl, Gregor |
Publisher: |
[S.l.] : SSRN |
Subject: | Stichprobenerhebung | Sampling | Theorie | Theory | Bayes-Statistik | Bayesian inference | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Robustes Verfahren | Robust statistics |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 17, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4250395 [DOI] |
Classification: | C11 - Bayesian Analysis ; C13 - Estimation ; C15 - Statistical Simulation Methods; Monte Carlo Methods ; E10 - General Aggregative Models. General |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Ensemble MCMC sampling for robust Bayesian inference
Böhl, Gregor, (2022)
-
Speeding up MCMC by efficient data subsampling
Quiroz, Matias, (2015)
-
Evolutionary sequential Monte Carlo samplers for change-point models
Dufays, Arnaud, (2016)
- More ...
-
Endogenous Money, Excess Reserves and Unconventional Monetary Policy
Böhl, Gregor, (2022)
-
Ensemble MCMC sampling for robust Bayesian inference
Böhl, Gregor, (2022)
-
Can taxation predict US top-wealth share dynamics?
Böhl, Gregor, (2017)
- More ...