Equilibrium Refinement for Infinite Normal-Form Games.
The authors present three distinct approaches to perfect and proper equilibria for infinite normal form games. In the first two approaches, players 'tremble' in the infinite game playing full support approximate best responses to others' strategies. In the strong approach, a tremble assigns high probability to the set of pure best responses; in the weak approach, it assigns high probability to a neighborhood of this set. The third, limit-of-finite approach applies traditional refinements to sequences of successively larger finite games. Overall, the strong approach to equilibrium refinement most fully respects the structure of infinite games. Copyright 1995 by The Econometric Society.
Year of publication: |
1995
|
---|---|
Authors: | Simon, Leo K ; Stinchcombe, Maxwell B |
Published in: |
Econometrica. - Econometric Society. - Vol. 63.1995, 6, p. 1421-43
|
Publisher: |
Econometric Society |
Saved in:
Saved in favorites
Similar items by person
-
Extensive Form Games in Continuous Time: Pure Strategies.
Simon, Leo K, (1989)
-
Countably Additive Subjective Probabilities.
Stinchcombe, Maxwell B, (1997)
-
Some Measurability Results for Extrema of Random Functions over Random Sets.
Stinchcombe, Maxwell B, (1992)
- More ...