Error spotting with gradient boosting : a machine learning-based application for central bank data quality
Year of publication: |
May 2023
|
---|---|
Authors: | Burger, Csaba ; Berndt, Mihály |
Publisher: |
Budapest : Magyar Nemzeti Bank |
Subject: | data quality | machine learning | gradient boosting | central banking | loss functions | missing values | Datenqualität | Data quality | Künstliche Intelligenz | Artificial intelligence | Geldpolitik | Monetary policy | Zentralbank | Central bank | Theorie | Theory |
Extent: | 1 Online-Ressource (circa 34 Seiten) Illustrationen |
---|---|
Series: | MNB occasional papers. - Budapest : [Verlag nicht ermittelbar], ISSN 1585-5678, ZDB-ID 2224669-1. - Vol. 148 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Other identifiers: | hdl:10419/299276 [Handle] |
Classification: | C5 - Econometric Modeling ; C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data ; E58 - Central Banks and Their Policies |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Burger, Csaba, (2023)
-
Tänzer, Alina, (2024)
-
Review of macroeconomic modelling in the Eurosystem : current practices and scope for improvement
(2021)
- More ...
-
Burger, Csaba, (2023)
-
Defaulting alone: The geography of SME owner numbers and credit risk in Hungary
Burger, Csaba, (2022)
-
The geography of climate change risk analysis at central banks in Europe
Burger, Csaba, (2023)
- More ...