ESG score prediction through random forest algorithm
| Year of publication: |
2022
|
|---|---|
| Authors: | D'Amato, Valeria ; D'Ecclesia, Rita Laura ; Levantesi, Susanna |
| Published in: |
Computational management science. - Heidelberg : Springer, ISSN 1619-6988, ZDB-ID 2107564-5. - Vol. 19.2022, 2, p. 347-373
|
| Subject: | ESG risks | Firm performance | Machine Learning | Künstliche Intelligenz | Artificial intelligence | Corporate Social Responsibility | Corporate social responsibility | Unternehmenserfolg | Prognoseverfahren | Forecasting model | Nachhaltige Kapitalanlage | Sustainable investment | Algorithmus | Algorithm |
-
Fundamental ratios as predictors of ESG scores : a machine learning approach
D'Amato, Valeria, (2021)
-
Doğan, Murat, (2025)
-
Svanberg, Jan, (2023)
- More ...
-
Fundamental ratios as predictors of ESG scores : a machine learning approach
D'Amato, Valeria, (2021)
-
Recent developments in financial modelling and risk management
D'Ecclesia, Rita Laura, (2021)
-
Measuring business impacts on the sustainability of European-listed firms
D'Ecclesia, Rita Laura, (2024)
- More ...